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Summary. The Kekul6 structure counts (K) for primitive coronoids are treated. The K formula which 
involves the trace of a matrix product is recalled and supplemented with new findings. In this way 
a kind of symmetry in the mathematical formulations is restored. Another general formulation for 
the K number is provided in terms of polynomials which, for a somewhat mysterious reason, are 
identified as the matching polynomials of cycles. 
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Z~ihlung yon Kekul6-Strukturen 

Zusammenfassung. Es werden Kekul6-Strukturz/ihlungen (/2) ffir einfache Coronoide behandelt. Die 
Formel ffir K wird dutch neugefundene Eigenschaffen erg/inzt. So wird eine Art von Symmetrie in 
den mathematischen Formulierungen erreicht. Eine andere generelle Formulierung der K-Zahlen wird 
in Form yon Polynomen bereitgestellt, welche aus uneinsichtigen Griinden als die passenden Polynome 
yon Cyclen identifiziert wurden. 

Introduction 

Coronoid systems (or coronoids) are polyhexes with holes, referred to as corona 
holes. In the present work it is tacitly assumed that only one corona hole of a 
system under consideration is present. More precisely, such systems should be 
referred to as single coronoids. A corona hole, when interpreted as a benzenoid 
(polyhex without hole) should have a size of at least two hexagons. 

The term polyhexes is here used for benzenoids and coronoids taken together. 
They are geometrically planar systems of congruent regular hexagons. For general 
treatments of polyhexes, including precise definitions, we cite some recent mono- 
graphs [1 - 4]. 
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The present work deals with the enumeration of Kekul6 structures [3] for 
coronoid systems. The notion of Kekul6 structures is transferred from chemistry. 
This is quite natural since coronoid systems have chemical counterparts in con- 
jugated (polycyclic aromatic) hydrocarbons. 

For primitive coronoids [5, 6] the studies of Kekul6 structure counts (K) have 
led to interesting classes of polynomials (for references, see below). These results 
are reviewed concisely and presented for the first time in a general form. They are 
also supplemented by original results. 

Basic DeFinitions and Notation 

A primitive coronoid consists of an even number of segments in a circular ar- 
rangement. It has only linearly and/or angularly annelated hexagons. The symbols 
L and A are used for linear and angular annelation, respectively. The length of a 
segment, say l, is taken as the number of hexagons between two neighbouring A 
hexagons inclusive. The sequence of segments associated with a primitive coronoid 
is written 

/tl, 12,... ,  Is~, 
where S is the number of the segments. Then the number of hexagons is 

S 

h = - S +  2 l;. (1) 
i = 1  

The number S must be even. It is specifically restricted to S= 6, 8, 10, 12, 14, .... 

General Formula for Kekul6 Structure Count (I) 

Consider a primitive coronoid characterized by 

A = / a l  + 1, a2 + 1 , . . . ,as+ 1/. 

An elegant formula for the Kekul6 structure count is 

where 

K{A} = Tr(al a z ""  as) + 2, 

(2) 

(3) 

ai=[1 i 101 . (4) 

This is a slight generalization of a previously given form [7]. 
The addition of two units in Eq. (3) accounts for the two proper annulenoid 

[7] Kekul6 structures, in which the two perimeters are "in-phase" conjugated 
circuits. 

Units: Definitions and Properties 

Definition and Notation 
In a primitive coronoid a unit u may be defined as the hexagons between two 
arbitrary A hexagons inclusive. Hence a unit is characterized by a sequence of 
segments. It is written symbolically [8] 

u = [ l l , / 2 , . . . ,  I s - 1 , / s ] ,  

where s is the number of segments in the unit. 
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Fragments  o f  a Unit 

A matrix u is defined for a unit  u as 
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I u0 Ul l u =  , (6) 
H2 U3 

where the elements are K numbers  for certain fragments of  u [8 - 11]. When  u is 
given by Eq. (5), then: 

Uo = K{[ l l  - 1,/2,/3 . . . .  , l~_ 1, Is - 13}, (7) 

ul = K{[ l ,  - 1, 12,  13, .. . ,  ls-1 - -  1]},  (8) 

u2 = X{I-12 - 1, 13,..., l,_ ,, l, - 1]}, (9) 

u3 = K{[12 - 1,/3, ..., ls-1 - -  13}. (10) 

Proper  modificat ions should be executed by taking into account  that  no length of  
a segment may  be less than 2. The matrix of  Eq. (4) is a special (degenerate) case 
of  u, pertaining to one segment (s-- 1). 

Relat ions 

The K number  of  u is [10, 12] 

K{u} = Tr(u) + Tr(ju) = [1 

Here 

, uFII = u0 + ul + u2 + u3. (11) 

The determinant  of  u is [9, 10, 12] 

det (u) u~ u I -~- = U 0u3 -- Ul U2 = ( - -1)s ,  (13) 

General Formula  for Kekul6 Structure Count (II) 

A formula  corresponding to Eq. (3) is sound for a primitive coronoid  C consisting 
of  n units, ul, u> ..., un in succession; 

K{C} = Tr(ul u2 "'" u,) + 2. (14) 

The total number  of  segments is 

n 
S = Z s;, (15) 

i=1 

where si is the number  of  segments of  the unit  ui. The total number  of  segments 
(S) is restricted to the even numbers  specified above. 
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Kekul~ Structure Counts for Primitive Coronoids with Repeated Units 

Polynomials for the title quantities have been derived during some studies over the 
last few years and are scattered in different publications [8 - 11, 13]. In the following 
this material is reviewed for the first time systematically in general terms. 

Assume that a primitive coronoid, C ("), consists of n units u in the above sense 
and that all of them are identical "up to isoarithmicity". It means that all of them 
have the same sequence of segments (4). Each unit spans from an A hexagon to 
another A hexagon inclusive. Only in the degenerate case of one unit (n = 1) an A 
hexagon is taken twice, at each end of the unit. This defines the class of primitive 
coronoids with repeated units. It is clear that a "waffle" [8, 10] has (at least) six 
repeated units. Fig. 1 shows another example, demonstrating that C (6) has not 
necessarily hexagonal symmetry. This system may be interpreted (for instance) as 
consisting of the six units [4, 3, 2, 2, 2] or [4, 3, 2 3 ] (when the shaded hexagons 
in Fig. 1 are taken as common to two neighbouring units). 

For the Kekul6 structure count we introduce the notation 

C (") = K{C(")}. (16) 

As a simple corollary of Eq. (14) one has 

C (n~ = Tr(u n) + 2. (17) 

The total number of segments is 

S = ns;  (18) 

cf. also Eq. (15). 

Polynomial Formulas (I) 

The first polynomial formula for the K numbers of primitive coronoids pertains 
to the c lass /a+ 1, a+ 1, a+ 1, a+ 1, a+ 1, a+ 1 /=/a+ 1/6, of which kekulene [14, 
15] is a member (for a=2) .  It reads [ 1 6 -  19] 

K { / a +  1/6 } = ( a  3 + 3 a )  2 + 4 = ( a  2+1)2(a  2 + 4 )  

= a 6 -t- 6 a 4 + 9 a 2 + 4. (19) 

Fig. 1. A primitive coronoid with six re- 
peated units 
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The formula was generalized to the class of primitive coronoids with six repeated 
units u, each holding s segments, with the result [9] 

C (6) = X 6 - -  ( - -  l)S6x 4 + 9X 2 -- (-- 1)s2 + 2, (20) 

where the variable x is 

x = Tr(n) = u0 + u3. (21) 

It is expedient to distinguish between the cases when s is even or odd by the symbols 
Q~{n and C(o~2d, respectively [9]. Then one has in general terms: 

C~v{n = ~ (Cn[x) + 2, (22) 

022  d -~" i - "  e~ (C,, ] ix) + 2 = 6t (Cn ] x) + 2. (23) 

The variable x is given by Eq. (21). 
The symbol a (Cn [ x) is used to identify the class of matching polynomials [20, 

21] for a cycle C,, which are closely related to the characteristic polynomials [22, 
23] of C,. The definition of (~ (C, [ x) is implied in Eqs. (23). Some authors prefer 
to define the matching polynomial in this way. The deeper background of Eqs. (22) 
and (23) is the (generalized) "Hosoya mystery" [13, 18-]. 

Extension to Primitive Non-Coronoids 

A primitive coronoid can be constructed for any combination of n units with s 
segments in each if the total number of segments (18) becomes an even number 
S ~> 6 as a necessary condition. However, this condition is not sufficient; many 
particular cases with acceptable values of n and s cannot be realized unless it is 
allowed for distorted hexagons when drawn in a plane. Also such coronoid-like 
systems have well-defined Kekul6 structures, of which the numbers follow the 
pertinent formulas of the above treatment. Then also S =  2 and 4 are possible 
values. Such systems, which we may call primitive non-coronoids, have actually 
been studied in detail in the case of equidistant segments [7, 17], and even the 
degenerate case of n = 0 (S= 0). 

Another type of primitive non-coronoids have an odd number of segments in 
total, which is realized when both n and s are odd. Also in this case there are well- 
defined Kekul6 structures. However, some of our formulas need modifications 
because of the absence of proper annulenoid Kekul6 structures. This fact is un- 
derstood when realizing that both perimeters are odd-membered cycles. 

Generalization o f  Formulas 

In view of the above discussion, Eq. (3) should be generalized to 

K{A} = Tr(al a2 ... as) + 1 + (--1) s, 

and correspondingly for Eq. (14): 

K{C} = Yr(Ul u2 ... u,) + 1 + ( -  1) s. 

The same modification is also necessary for Eq. (17). 

(24) 

(25) 
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T h e  e x p r e s s i o n  o f  (22)  f o r  C(=e"]e . is v a l i d  i n  g e n e r a l ,  b u t  C(ondd i n  (23)  s h o u l d  b e  

m o d i f i e d  as:  

C(o~2d = 6t ( C ,  Ix)  + 1 + ( - 1)" . (26)  

L i s t i n g  o f  P o l y n o m i a l s  

I n  T a b l e  1 we  g ive  a c o m p r e h e n s i v e  s u r v e y  o f  t h e  C (~ p o l y n o m i a l s  i n  t h e  g e n e r a l i z e d  

f o r m .  

E x a m p l e  

I n  t h e  c a s e  o f  F i g .  1, w h e n  t a k i n g  

u = I-4, 3, 2 3 ] ,  

t h e n :  

O b s e r v e  t h a t  

u0 = K { [ 3 ,  3, 22]} = 2 7 ,  

ua = K { [ 3 ,  3, 23} = 17 ,  

.~  = K{ [2~ ] }  = 8 ,  

"3  = K{ [22 ] }  = 5 .  

d e t ( u ) =  2~ 175 = - 1  

(27)  

(28)  

(29)  

Table l .  The polynomials C (~) for n ~< 12; C~)en when s is even, Co"2a when s is 
odd 

n C (n) 

0 
1 

2 
3 
4 

5 
6 
7 
8 

9 
10 
11 
12 

4 
x + l + ( - 1 )  s 
.x'2 - ( - 1)s2+2 

x 3 -  ( -  1)~ 3x+ 1 ( -  1) ~ 
x 4 - ( - 1)s 4x 2 + 4 

x 5 - (  - 1)S5x3 + 5x+ 1 + ( -  1)" 
x 6 - ( -  1)S6x4 + g x 2 -  ( -  1)s2+2 
x 7 - (  - 1)S7x5+ 14x3- (  - 1 ) '7x+  1 + ( -  1) s 
x 8 - ( -  1)s 8x 6 + 20x 4_  ( _  1)~ 16x 2 + 4 
x 9 - -  ( - -  1 )  s 9 X  7 + 27x 5 - ( -  1) s 30x 3 + 9x + 1 + ( -  1) ~ 
x l ° -  ( -  1)s 10x 8 + 35x 6 -  ( -  I)" 50x 4 + 25x 2 -  ( -  1)s 2 + 2 
x 11 _ ( _ 1 )~ 11 x 9 + 44x 7 - ( - 1 )" 77x 5 + 55x 3 - ( - 1)~ 11 x + 1 + ( - 1)~" 
x 12 - ( - 1) s 12x 1° + 54x 8 - ( -  1)~ 112x 6 + 105x 4 -  ( -  1) s 36x 2 + 4 
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in consistence with Eq. (13) since s=  5 in our example. In order to compute the K 
number for the whole system in Fig. 1 we apply Eq. (20), also found in Table 1, 
with s odd and 

The result is: 

x = Tr(u) = 27 + 5 = 32. (30) 

C{3a (32) = 1080042500. (31) 

Supplementary Developments 

The asymmetry of Eq. (21) may seem somewhat disturbing. Why is it possible to 
express the K numbers of primitive coronoids with repeated units in terms of the 
two selected elements of the u matrix (u0 and u3)? We have restored the symmetry 
by considering units which have linearly annelated hexagons (L) in common, and 
not only angularly annelated (A) as in the above treatment. It is true that the new 
considerations are not necessary in a pragmatic sense, since any primitive coronoid 
has (at least six) A hexagons, while it may or may not have L hexagons. But also 
this "asymmetry" disappears when the primitive non-coronoids are included. Such 
systems may very well consist of only L hexagons [-17]. In the below treatment the 
formulas are given in the generalized terms which allow for primitive non-coronoids, 
including those with an odd number of segments. 

Let a unit u of a primitive coronoid, in the generalized sense, consist of any 
part of the system between two non-neighbouring hexagons, these two hexagons 
inclusive. As before, we consider sequences of units where each neighbours share 
one hexagon. Such a pair of units we shall refer to as compressed, and we shall 
speak about angular (resp. linear) compression, depending on whether the common 
hexagon is an A (resp. L). 

General Formulation for the Kekulk Structure Count 

The K formula (25) is a generalization of (14), but still it requires the presence of 
A hexagon(s). It is not applicable to primitive non-coronoids without A. A remedy 
of this deficience is achieved by a further generalization where allowance is made 
for both angularly and linearly compressed units. The only modification which is 
necessary, is to insert j in-between two matrices ui and u/+ 1 if the corresponding 
units (ue and ue+ 1) are linearly compressed. 

u 2 

u 4 

l u 

Fig. 2. A primitive coronoid divided into four units 
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It seems best to illustrate this general algorithm by an example. In Fig. 2 a 
primitive coronoid (C) is divided (arbitrarily) into four units: ul, u2, u3, and u4. If 
the units are compressed by A or L hexagons according to the pattern of Fig. 2, 
then 

K{C} = Tr(llljll2jll3U4) + 1 + ( -  1) s. (32) 

Here j is the matrix given byEq.  (12). Any cyclic permutation of the factors in the 
matrix product of (32) will work, and also the reversing of the factors. One has 

and also equal to 

Tr (ulj u2j u3 u4) = Tr(j u2j u3 !14 U l )  . . . .  etc. 

Tr (114 U 3 j U 2 j u l) = Tr (ul u4 u3 j u2 j) . . . .  etc. 

(33) 

(34) 

In the particular example of Fig. 2, the numerical values are: 

o ,  103 (3,, 
which yields, according to the alternative in Eq. (32): 

F551 119q 
K = Tr[_338 733 + 2 = 626. (36) 

Assume now that n repeated units u (identical up to isoarithmicity) are linearly 
compressed in a circular arrangement, forming a primitive coronoid or primitive 
non-coronoid. Then, for the Kekul6 structure count one has: 

C (nl = Tr[(ju)"] + 1 + ( -  1) s. (37) 

Polynomial Formulas (II) 

Based on Eq. (37) a set of polynomials for C (n) may be derived in the same way as 
in the above treatment, but in some sense in a complementary way, as shall be 
seen from the below result. 

It should be noticed that the pre-multiplication of u by ] only interchanges the 
rows, i.e. 

Ju=IU2u0 ulu31 " (38) 

Therefore, firstly: the variable (x) should now be 

x = Tr(ju) = ul + u2. (39) 

Secondly: 

det(ju) = - det(u) = u 1 u 2 - u 0 u 3 . (40) 
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If  we wish to use polynomials in the same form as they are given in Table 1, we 
must  choose s so that 

det(ju) = ( -  1) ~ (41) 

in analogy with Eq. (13). Therefore, in the case of  linear compression, s should be 
taken as the number  of  segments in u off by one (in either direction). In a less 
restrictive way, it is sufficient to put  s equal to an even number  for an odd number  
of  segments in u and vice versa. 

In conclusion: for n linearly compressed units u, each holding t segments, use 
the expressions of  Table 1 for C(env)n if t is odd and C~d if t is even. Insert the 
variable x according to Eq. (39). 

Example 

In Fig. 3 the same coronoid as in Fig. 1 is depicted, but with a linear rather than 
angular compression of  units indicated. Now we choose 

U = [24, 4, 2] (42) 

and consequently: 

In this case 

u0 = K{[23, 4]} = 23, 

ul = K{[23, 3]} = 18, 

u2 = K{[22, 4]} = 14, 

.3 = x { [ 2 2 ,  33} = 11.  (43) 

dot(°  (44  

in consistence with t = 6. Hence we have to use the expression for C(o6~d (x), where 

x = Tr(ju) = 18 + 14 = 32 (45) 

should be inserted. It is seen that the resulting K number  is the same as in Eq. (31), 
as it should be. 

Fig. 3. A primitive coronoid of Fig. 1 with 
another separation into six repeated units 
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